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Abstract. The decoherence effect on Grover algorithm has been studied numerically through a noise mod-
elled by a depolarizing channel. Two types of error are introduced characterizing the qubit time evolution
and gate application, so the noise is directly related to the quantum network construction. The numerical
simulation concludes an exponential damping law for the successive probability of the maxima as time
increases. We have obtained an allowed-error law for the algorithm: the error threshold for the allowed
noise behaves as εth(N) ∼ 1/N1.1 (N being the size of the data set). As the power of N is almost one, we
consider the Grover algorithm as robust to a certain extent against decoherence. This law also provides an
absolute threshold: if the free evolution error is greater than 0.043, Grover algorithm does not work for any
number of qubits affected by the present error model. The improvement in the probability of success, in
the case of two qubits has been illustrated by using a fault-tolerant encoding of the initial state by means
of the [[7,1,3]] quantum code.

PACS. 03.67.Lx Quantum computation – 03.67.Pp Quantum error correction and other methods for
protection against decoherence

1 Introduction

The discovery of Shor’s algorithm opened up Pandora’s
Box of quantum computation. Other algorithms followed
it, although they did not change the classic complexity
class, the quantum version runs faster than any known
classic algorithm. This is the case of quantum search algo-
rithm proposed by Grover [1]. Nevertheless when consid-
ering the physical implementation of these algorithms, it
was discovered that decoherence and dissipation (as spon-
taneous emissions) were going to be the true bottlenecks
that would limit the usefulness of the quantum algorithms.

The Grover algorithm has been successfully imple-
mented, see for example [2]. Nevertheless, the algorithm
requires the synthesis and handling of highly entangled
states that are very prone to decoherence. Some attempts
at simulating the effect of errors in the algorithm have
been published. Pablo-Norman and Ruiz-Altaba [3] intro-
duce gaussian white noise into each step of the algorithm
considering a description of the algorithm as a rotation
in a two-dimensional space. The model only takes into
account two different types of error, one affecting the re-
quired state and other for the orthogonal state. The noise
does not modify the number of iterations at which the
maxima appear (kmax ∼ �N1/2π/4�) with respect the case
of no noise, although their probabilities are now smaller.
They conclude that the allowed noise law for the algorithm
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scales as N−2/3 (N = 2n being the size of the data list).
Using a two-state model and representing the time evo-
lution of the algorithm through an SU(2) transformation,
Yu and Sun [4] have studied the effect of the decoherence
induced by the environment interaction, concluding the
slight robustness of the algorithm against the noise.

In the first stages of carrying out the algorithm, the
gate imperfections dominate the evolution. At longer
times, the decoherence determines the results. Long
et al. [5] study the effect of the gate imperfections on
the Grover algorithm without decoherence. They con-
clude that the size of the database is limited by a law
of the power minus two of a parameter that measures
the gate imperfection. Hsieh et al. [6] indicate that Long
underestimates the allowed error in a factor 21/2, al-
though they maintain the dependency with N . Shapira
et al. [7] study the effect of the unitary noise character-
ized by standard deviation ε that must fulfil the condition
ε < O(n−1/2N−1/4) to maintain a significant efficiency.

Chen et al. [8] modelled the noise in the algorithm
by means of the depolarizing channel. Only evolution er-
rors are taken into account through the density matrix
formalism, achieving an equation that allows the evolu-
tion of the probability of the required state to be rep-
resented depending on the time step considered. On the
other hand, Song and Kim [9] carried out a similar study
by means of two models: a first stochastic model with two
levels and dissipation and a second model with unitary
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imperfections. Both models agree after a suitable adjust-
ment of their parameters. The results of the second model
can be understood through two mechanisms: a stochas-
tic rotation within a two-dimension subspace (H2) of the
total Hilbert space in which is developed the algorithm
and another mechanism of diffusion towards the complete
Hilbert space (HN ). The probability of the system remain-
ing within H2 decreases exponentially over time, charac-
terized by a decoherence parameter γ. The average fidelity
value decreases over time approximately in an exponential
form.

Ellinas and Konstadakis [10] consider the effect of the
decoherence by interaction with the environment of the
algorithm with two states, concluding its robustness, being
able to make searches successfully after N1/2 applications
of Grover gate. Azuma [11] introduces phase errors in each
qubit and time step. Making a perturbative development,
he calculates the terms numerically until fifth order, and
explores the region in which the algorithm with noise finds
the required item with a probability threshold (pth) after
applying M gates. The conclusion is that the allowed noise
behaves as 1/M(1 − pth)n.

The effect of a noisy oracle in the algorithm is studied
by Shenvi et al. [12]. They use a discrete and continuous
model to introduce random phase errors. They find that if
the size of the oracle increases according to a factor k, the
error must decrease as k1/4 to maintain the probability of
success.

The chaotic behaviour coming from the static inter-
actions between qubits has been studied by Pomeransky
et al. [13] and the dissipation coming from non-unitary
errors, by Zhirov et al. [14].

In the previous studies the noise is not introduced ex-
plicitly into the quantum gates, since they neither consider
an explicit implementation nor the growth of the total er-
ror with the complexity of the circuit, which depends on
the number of gates as well as the parallelism that imple-
ments the Grover gate.

In this work, we will study the robustness of Grover
algorithm against the noise. The noisy algorithm will be
numerically simulated by means of the isotropic depolar-
izing channel model. The noise is introduced by means
of two parameters (ε, γ) related to the free evolution and
gate error probabilities. Section 2 summarizes the main
steps of Grover algorithm and the quantum networks
that implement it. Section 3 establishes the assumption
of the decoherence model. Section 4 puts together the
numerical results concluding several effects of the noise:
an exponential-time damping law, a displacement for the
successive maxima and an allowed-error law. Finally the
quantum error correcting codes usefulness is shown by
means of a simple binary [[7,1,3]] fault-tolerant encoding.

2 Grover search algorithm

Any classic algorithm for searching an item in a randomly
ordered database of N entries requires O(N) steps on aver-
age. Grover discovered a quantum algorithm [1] that runs
in O(N1/2) steps. Let us review the protocol.

Suppose we wish to search through an unstructured
database with N items. Rather than search for the items
directly, we concentrate on the index of those items, which
is just a number within the range 0 to N − 1. For conve-
nience we assume N = 2n, so the index can be stored in
n bits. By definition, the solution can be represented by
means of a function f such as: f(xs) = 1 if xs is a solution
to the search problem and f(x) = 0 if x is not a solution.
A classic algorithm would need to calculate (N −1) values
of the function f(x) to obtain the solution with certainty
(assuming that x = xs exists), and the number of compu-
tational steps increases as O(N).

Using quantum mechanics, Grover showed that it is
possible to decrease the number of f -calls. Suppose the un-
structured database with N items DB = {x0, . . ., xN−1},
and we are searching for the item xs so f(xs) = 1 and
f(xk) = 0 ∀k �= s. The quantum Grover algorithm has
the following steps.

1. Synthesis of the state superposition of all indices |Ψ0〉.
Apply the n-qubit Hadamard transformation to the
initial state |0⊗n〉

H⊗n = H ⊗ . . .
(n)

. . . ⊗ H with H =
1√
2

(
1 1
1 −1

)

(1)

|Ψ0〉 = H⊗n ∣∣0⊗n〉 =
1√
N

N−1∑
x=0

|x〉

= index state superposition. (2)

2. Application of Grover gate

G = (2H⊗n|0⊗n〉〈0⊗n|H⊗n − In)(In − 2|xs〉〈xs|)
= −I|ψ0〉I|xs〉,

where In is the identity of dimension n and I|φ〉 =
In − 2|φ〉〈φ|.
The first part of G is the inversion with respect to the
average of the coefficients and the second part inverts
the sign of the required item xs and is functioning as
an efficient “black box” called oracle:

I|xs〉 |x〉 = (−1)f(x) |x〉
{− |xs〉 if x = xs,

|x〉 otherwise.
(3)

Rewriting the |Ψ0〉 state in terms of the orthonormal
basis {|xs〉, |x⊥

s 〉 =
∑
x �=xs

|x〉 /
√

N − 1}:

|Ψ0〉 = cos(θ/2)
∣∣x⊥
s

〉
+ sin(θ/2) |xs〉

with sin(θ/2) = 1/
√

N, (4)

and the successive application of Grover gate provides:

Gk |Ψ0〉 = cos([2k + 1](θ/2))
∣∣x⊥
s

〉
+ sin([2k + 1](θ/2)) |xs〉 . (5)

For huge values of N , sin(θ/2) ∼ θ/2 and the proba-
bility of success will be Ps = | sin([2k + 1](θ/2))|2 ∼ 1
when k = k0 ∼ �πN1/2/4� ∼ O(N1/2).
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Fig. 1. General network implementing Grover algorithm when
the oracle is searching for the noisiest state |0⊗n〉.

3. After k0 applications of the Grover gate, we measure
on the state Gk0 |Ψ0〉.

The conclusion is that after the O(N1/2) Grover gate calls,
the measurement on the state provides a probability near
to one to obtain the required item xs.

2.1 Quantum networks implementing the algorithm

In order to introduce the errors into the algorithm we im-
plement it as a quantum network Q. The following over-
complete gate set is used {H (Hadamard), X and Z (Pauli
gates), CNOT = C2(X), T (Toffoli) = C3(X)} accord-
ing the simplicity criterion of not using gates involving
more than three qubits. The CNOT gate only is used
in the case of n = 2, in the remaining cases only one
and three qubit gates are involved. In spite of the net-
work implementing the Grover gate G has two separate
pieces, the oracle I|xs〉 = (In−2|xs〉〈xs|) and the inversion
−I|ψ0〉 = (2H⊗n|0⊗n〉〈0⊗n|H⊗n − In), their construction
is closely related. Evidently, the gate set chosen is not the
minimum but the main goal is to achieve scaling laws for
the permitted error that should be, to a certain extent,
independent of the set used. Note that all the results ob-
tained will be strictly applicable to the present gate and
error model.

The initial state |Ψ0〉 is synthesized rotating Hadamard
the n-qubit initial register |0⊗n〉. When no error is present
in the algorithm, the result of the algorithm does not de-
pend on the state |xs〉 chosen but in the noisy case it
does through the oracle piece of the network. Choosing
the noisiest |xs〉 state will provide an upper bound of the
error network. The noisiest |xs〉 will be the one whose
network involves more time steps and gates, so we chose
|xs〉 = |0⊗n〉. The general pieces of network implementing
the oracle and the inversion −I|ψ0〉 are shown in Figure 1.
They are constructed by means of generalized control-Z
gates involving (n − 1) control qubits and the nth as the
target qubit. These gates can be transformed into gen-
eralized Toffoli gates as Cn(X) = H(n)Cn(Z) H(n), H(n)
being a Hadamard gate applied on the nth qubit. Figure 2
shows the breakdown of these Cn(X) gates into the C3(X)
gates considered in the universal set. Note the Cn(X) im-
plementation involves some additional ancilla qubits.

Fig. 2. Implementation of a general Cn(X) gate by means of
Toffoli gates.

Taking the above networks into account it is not dif-
ficult to show how fast the resources increase. The num-
ber of Toffoli gates are 2(n − 2) ((n − 2) for the oracle
and (n − 2) for the −I|ψ0〉 piece of network, n > 2); 3n
Hadamard gates, 2(2n − 1) X gates and 2 Z gates; these
make 7n one-qubit gates. The number of total gates in-
creases as O(n). The ancilla qubits necessary to implement
the Cn(X) gates are (n−3), i.e. O(n). The number of total
time steps of the algorithm is 2n + 6, increasing as O(n).

3 Decoherence model

To simulate the noisy quantum network Q an indepen-
dent stochastic error model [15] based on the notion of
error locations [16] is used. In a given location or gate of
the network a random error is introduced. Each error is
independent of the other errors happening at the same or
different locations. All quantum steps have some proba-
bility of error, and we distinguish between memory errors
(resulting from qubit free-evolution) with error probability
ε and one-qubit and two-qubit gate errors with probability
of error proportional to a parameter γ.

Memory errors are located at each time step in the net-
work, affecting all the qubits evolved in that step. Their
effect can be controlled constructing highly parallelized
networks. To model the evolution errors we consider the
depolarizing channel model. For each error location affect-
ing one qubit with an ε probability of error, we consider an
isotropic ε/3 error probability for the X, Y and Z, as long
as the probability of having no evolution error is (1 − ε).

We consider two ways in which the noise affects the
gates: we assume each gate is implemented in one time
step, so an evolution error with ε error probability is
introduced into all the qubits in addition to an intrin-
sic gate error with a probability proportional to γ af-
fecting the qubits involved in the gate application. For
the noisy one-qubit gates (Hadamard, Pauli and measure-
ment), γ is the error probability set up at the gate loca-
tion (with γ/3 isotropic for X, Y and Z). In the two-qubit
gate (CNOT, in the n = 2 case), we assume there are
sixteen possibilities corresponding to the tensor product
{I, X, Y, Z}⊗{I, X, Y, Z}. If the one qubit gate error prob-
ability is γ, each two-qubit error appears with probability
γ/15, because the I ⊗ I term is not, actually, an error op-
eration. We let the gate operate before the error proceeds.
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This O(γ) (instead of O(γ2)) two-qubit error behaviour
accounts for the possible gate error spreading. Note that
in this model γ only accounts for the error coming strictly
from the gate application. For the three-qubit Toffoli gate,
we assume there are sixty four possibilities corresponding
to the tensor product {I, X, Y, Z}⊗3 and the error is
γ/63 (instead O(γ3)) because I⊗3 is not an error. As with
CNOT, we assume the Toffoli gate is carried out in one
time step affected by an error probability of ε per qubit
and the gate operates before the error proceeds. Note that,
even though the γ values are the same for one, two and
three qubit gates, the effective error is different for each
gate.

Neither leakage errors nor explicit assumptions on scal-
ing problems are taken into account. We assume that ε and
γ errors are independent of the total number of network
qubits.

Errors are introduced into the calculation using the
Luxury Pseudorandom Numbers [17] which is an improve-
ment of the subtract-and-borrow random number gener-
ator proposed by Marsaglia and Zaman. The fortran-77
code is due to James [18], and is used with the luxury
level parameter p = 223. As the code state for this value
of p, any theoretically possible correlations have very small
chance of being observed. The code returns a number of
32-bit random floating point number in the range (0, 1).
For each run a new random seed is chosen as a 32-bit
integer.

The noiseless quantum network Q can be represented
by means of a quantum operator Q̂ which is a sequence of
time step operators T̂i and gates Ĝj , Q̂ = T̂t ◦Ĝt ◦· · · T̂1 ◦
Ĝ1. Each time step has the structure T̂i = Î⊗n and Ĝj in-
volves a tensor product of some unitary gates (ĝj(q{kj}))
affecting a subset of {kj} qubits and the identity operators
affecting the remaining qubits: Ĝj = ĝj(q{kj}) ⊗ns�={kj} Îs.

The noise transforms Q̂ into Q̂noisy, where each T̂i has
the new form T̂i,noisy = Â1

i1
⊗ · · · ⊗ Ân

in
, and {Âk

ik
, k =

1, . . ., n} ∈ {Î(ik = 0), X̂(ik = 1), Ŷ(ik = 2), Ẑ(ik = 3)}
each with probabilities (1 − ε), ε/3, ε/3 and ε/3 re-
spectively. The new form of Ĝj,noisy = ĝj,noisy(q{kj}) ⊗
T̂j,noisy, where one noisy time step is introduced (T̂j,noisy)
and the corresponding noisy gates (ĝj,noisy) affecting the
q{kj} qubits with error probabilities O(γ). Each error dis-
tribution among the network provides a different noisy
quantum path.

We search for the noisiest state, involving the largest
number of gates ρ0 = |0⊗n〉〈0⊗n|, and the final noisy state
ρf is the weighted average over the output density matri-
ces for each noisy quantum paths (Q̂noisy ◦ ρ0), according
their probabilities PQ̂noisy

(ε, γ, n):

ρnoisy =
∑
noisy
paths

PQ̂noisy
(ε, γ, n)(Q̂noisy ◦ ρ0). (6)

The final success probability of the noisy Grover algo-
rithm is:

PS(ε, γ, n) = 〈searched state| ρnoisy |searched state〉
= 〈xs| ρnoisy |xs〉 . (7)

From the numerical point of view, these probabilities are
calculated as:

PS (ε, γ, n) =
1

NC

NC∑
i=1

〈
0⊗n

∣∣ ρnoisy,i(ε, γ, n)
∣∣0⊗n〉 (8)

NC being the number of total calculations. Equation (8) is
a statistical approximation to equation (7), the first being
exact when NC → +∞. In order to reach the numeric con-
vergence of the probability PS , the value of NC is taken
fulfilling the condition NC � 10 max(1/ε, 1/γ) = N0,
checking (by comparison of PS values when NC � N0)
that this choice of NC assures a convergence in the PS
bigger than the 0.5%.

4 Numerical results

With the previous decoherence model we have numerically
simulated the noisy Grover algorithm, studying several
aspects depending on the values of ε, γ and n.

4.1 Exponential-time damping law

The most evident effect of the noise on the algorithm is
the damping of the maxima for the success probability
(PS) as the time increases. We have carried out a variety
of calculations for PS(ε, γ, n = 2, . . . , 7) for several ε and
γ values, confirming the dependence law:

PS (ε, γ, n; t) = A (ε, γ, n) e−λ(ε,γ,n)t +
1
2n

(9)

in which the time evolution is strictly exponential. The
parameter t does not represent the real time steps in the
network in Figure 1, but the number of Grover gate (G)
applications. The term 1/2n originates because the states
involved in the algorithm are the linear combination of all
the qubit states having length n, so without dissipation
the final population does not vanish to zero when t goes
to infinity.

The A(ε, γ, n) is a lengthy function and smaller than
one for all the cases studied, so the bigger dependence
is included in the function λ(ε, γ, n) that we successfully
fit to:

λ(ε, γ, n) = (18.63ε + 8.124γ)n− 5.871ε− 12.336γ (10)

fulfilling λ(ε, γ, n) � 0 for n � 2 and 0 � (ε, γ). Note that
in case of ε = γ = 0 there is no noise and λ = 0. By fixing
our attention in the exponential dependence, equation (9)
for PS can be written in terms of the probability for the
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Fig. 3. Damping of the probability of success (PS) versus time
for noisy Grover algorithm having an ε−1 = 3000 evolution
error and γ−1 = 5000 gate error, for the case of n = 4. Solid
line on the maxima corresponds to the fitting curve obtained
from equation (10).

first maximum (PS(ε, γ, n; t1)) reached when t = t1 ∼
�πN1/2/4�:

PS (ε, γ, n; t) − 1
2n

= PS (ε, γ, n; t1) e−λ(ε,γ,n)(t−t1) (11)

allowing us to interpret τ = 1/λ as a decoherence pa-
rameter. In addition to this exponential-time damping-
law for the maxima, the minima increases their proba-
bility, reaching the steady limit PS(ε, γ, n; t) ∼ 1/2n for
large enough time parameter (t) values. As an example of
this behaviour, Figure 3 shows the case of n = 4 when
ε−1 = 3000 and γ−1 = 5000. The maxima are successfully
fitted to the exponential law (11) with λfit = 0.0282, while
the λ value calculated using the equality (10) is 0.0269.

4.2 First maximum evolution

If we are interested looking for an item in an unsorted
database using Grover algorithm, the minimum number of
iterations corresponds to the first maximum and reaching
it, we stop the process. In this section we study the noise
dependence of the function PS(ε, γ, n; t1) for t1 fixed to the
first maximum time step. We can reduce the number of
error variables without loosing the richness of the results
assuming the error condition ε = γ. With this condition
we have calculated the iteration time at which the first
maximum appears. Figure 4 shows the ε-value dependence
of the time at which the first maximum appears. Results
for the algorithm with n = 4, . . . , 7, qubits show a strong
dependence with ε. It is possible to fit the discontinuity
points onto a logarithmic curve as shown for n = 5, 6
and 7 in Figure 4: first maximum time ∼A(n) ln ε+B(n).

This behaviour shows the surprising fact that the big-
ger error (ε = γ) the smaller number of time steps (Grover
gate applications) are required to reach the first maxi-
mum, so less computational effort is needed. Its origin is
the increasing damping effect on the probability over time,

producing a bigger decrease in probability as the time in-
creases. At the same time, the corresponding probability
of success for the first maximum decrease will be shown
in the next section. The effect can be understood study-
ing the evolution of the coefficients in the state Gt |Ψ0〉
(that is the linear combination of 2n n-qubit states) as
the time t increases. As an example, a calculation with
n = 5 qubits and ε−1 = γ−1 = 2000, has been carried out
(see Fig. 5). For this error, Figure 4 shows that the first
maximum appears for t = 4. The state Gt |Ψ0〉 without
noise only involves two different coefficients (see Eq. (5)):
sin([2k+1]θ/2) for the searched state and cos([2k+1]θ/2)
(always the same) for the remaining states. Noise destroys
this behaviour and the coefficients of the n-qubit states
become different. Figure 5 shows the square of the coeffi-
cient for each n-qubit state at different time steps. Some
local maxima appear for 2, 3, 5, 9 and 17 correspond-
ing to n-qubit states with weight one. Without going into
detail on the network implementing the algorithm, the
noise effect could be viewed as some errors affecting the
noise-free state Gt |Ψ0〉 at the corresponding time step t.
Concretely, the effect of bit-flips is to interchange the n-
qubit states inside Gt |Ψ0〉. A bit-flip error of weight w
(noted as Xw, w having “1” at the positions where the
bit-flips occur) appear with a probability O(εw, γw) and
transform the state Gt |Ψ0〉 (as well as each n-qubit state)
into XwGt |Ψ0〉. As the more probable errors are for w = 1,
the n-qubit states in XwGt |Ψ0〉 with weight one (remem-
ber that the searched for n-qubit state is |00 . . . 0〉) will
show a local maximum in its probability (square of the
coefficient). The example studied has n = 5, and the max-
ima for the time steps t = 4 (first maximum), 6 and 8 (first
minimum) are shown in Figure 5. This maxima pattern is
maintained as the time increases. The n-qubit states with
weight two or more, have decreasing coefficients depending
on the weight of the n-qubit state. If the time increases
even more, all the squared coefficients converge to 1/2n
and the noise completely destroys the advantage of the
algorithm. In fact, if the error is big enough, the probabil-
ity for the n-qubit searched state could not be the biggest
one.

The effect of the noise in the Grover state is to produce
a probability flux, mainly, from the searched for n-qubit
state to the remaining ones, this flux being as big as the er-
ror increases. In the present work, the searched for n-qubit
state is the |00 . . .0〉 and the noisy Gt |Ψ0〉 has local max-
ima on the n-qubit states with weight one. If the searched
for n-qubit state would have weight u, the local maxima
in the noisy Gt |Ψ0〉 state would appear on n-qubit states
having weights u±1. This increasing damping of the prob-
ability for the searched for n-qubit state, make decrease
the time step at which the maxima appear.

4.3 Allowed-error law

The most interesting point to be answered is what is the
law that limits the allowed error in the algorithm. As
was mentioned in the introduction, several results seem
to point a N−a law. If a is less or close to 1, we consider
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Fig. 4. Results for the ε-value dependence
of the time at which the first maximum ap-
pears for the algorithm with n = 4, . . . , 7
qubits. Dashed line for n = 5, 6 and 7, fits
the discontinuity points to a logarithmic curve
A(n) ln ε + B(n).

Fig. 5. Square of the coefficients for the Grover state with n =
5 qubits and ε−1 = γ−1 = 2000 vs. the 5-qubit state number.
Some pattern of maxima appears that is maintained when the
time increases from (•) t = 4 (first maximum), (�) t = 6 and
(◦) t = 8 (first minimum). Dashed horizontal line represents
the value 1/32, that is the convergent value in the limit of a
long enough time evolution.

the algorithm as robust, other values for a (appreciably
greater than 1) will make the algorithm non-robust.

To look for the allowed-error law we study the prob-
ability of success (PS) for the first maximum depending
on the ε and γ values through its relationship C = ε/γ.

For each number of qubits (n = 2, . . . , 7) and C, we
calculate the probability PS(ε, C, n; t1) and obtain the
threshold value ε = εth(ε, C, n) solving the equation
PS(ε, C, n; t1) = Pth. The value of Pth (threshold proba-
bility) is chosen Pth = 0.5 (although it could be any other
value). If the condition ε < εth(C, n) is fulfilled, then the
PS(ε, C, n; t1) > Pth = 0.5. As an example of the kind of
curves obtained, we present the case C = 1 in Figure 6.
The crossing points between the curves PS(ε, C = 1, n; t1)
with the horizontal line Pth = 0.5, provide the thresholds
εth(C = 1, n). In the case of n = 3, a change of slope is
appreciated at the point indicated with an arrow. It orig-
inates because at this ε ∼ 3.4 × 10−3 the first maximum
change the time step at which it appears from t = 2 to
t = 1, as was mentioned in Section 4.2.

Representing the ln(εth(C, N = 2n)) versus ln N we
obtain a linear behaviour:

ln(εth(C, N = 2n)) = −a(C) ln N − b(C). (12)

The lines for different values of C are parallel, so coefficient
a (almost) does not depend on C as shown in Figure 7.
The a(C) and b(C) are plotted in Figure 8, providing an
almost constant a(C) value and upper bounded by a(C =
∞) ∼ 1.1, while b(C) is a slowly varying function.

Equation (12) provides some simple consequences and
estimations of the algorithm. Given some hardware char-
acterized by the pair (ε, γ) with C = ε/γ, the error thresh-
old for the allowed noise behaves like εth(N) ∼ 1/N1.1 as
the size of the data set N increases. Evidently the relation-
ship with the number of qubits exponentially decreases
εth(n) ∼ e−dn if a = d/ ln 2 and d = 0.762. This law
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Fig. 6. Probability for the first maximum versus ε (PS(ε, C =
1, n; t1)) for different n values: 2 (•), 3 (✚), 4 (�), 5 (�), 6 (�),
7 (�). Boxes reflect the crossings points between the curves
PS(ε, C = 1, n; t1) with the horizontal line Pth = 0.5 and
provide the thresholds εth(C = 1, n). A change of slope is ap-
preciated in the point indicated by an arrow.

Fig. 7. Logarithm of the error threshold εth(C, N) versus N =
2n for several C values: 0.1 (◦), 0.3 (✚), 1.0 (•), 6.0 (�), ∞ (�).

will permit us to establish an absolute threshold for the
Grover algorithm if the present error model is fulfilled. If
N = 2n, equation (12) provides the maximum number of
qubits the algorithm can handle, maintaining the success
probability greater than Pth = 0.5:

n � 1
a(C) ln 2

(−b(C) − ln εth(C, N)) . (13)

In order for n � 1, the condition εth � e−b(C)−a ln 2 must
be fulfilled. Its maximum value (εmaxth ) corresponds to the
minimum value of b(C), b(C)min = b(C = ∞) = 2.3802,
and taking a = 1.1, we obtain εmaxth = 0.043. This value
means the greatest error permitted in the present imple-
mentation of the algorithm. If ε > εmaxth , the algorithm

Fig. 8. Dependence of the coefficients with C of the law
ln(εth(C, N = 2n)) = −a(C) ln N − b(C).

does not work for any number of qubits affected by the
present error model.

We can estimate the maximum number of qubits for
a given error ε. Assuming ε ∼ γ = 10−5 as a possi-
ble error, this law provides ln(εth(C = 1, N = 2n)) =
−a(1) lnN − b(1) = −1.1 lnN − 2.711. For this C = 1,
the maximum number of qubits is n � 11 and the size
of the data base is N = 2048. Unfortunately the size
of this database is too small to be of practical interest.
In fact, the important searching problems could involve
database sizes, for instance, of 56 bits or more, then in-
cluding 256 ∼ 1017 items in the data set. In this case,
assuming C = 1, εth � e−b(C)−na ln 2 ∼ 10−20, which
is completely inaccessible from the experimental point of
view. The only way to use the Grover algorithm in real
and interesting problems will require a decoherence con-
trol method.

4.4 Two-qubit encoded Grover algorithm

To control the decoherence a quantum error correcting
code could be used. The effect can already be appreciated
in the case of two qubits. If we consider the Grover gate
application as a compact block, the encoded network is
simplified considerably as is pointed out in Figure 9. Af-
ter a fault-tolerant encoding of the |00〉 state, the H⊗2 gate
is applied, followed by one Grover gate application. After
that, an error recovering step would be required, but as
the next step will be a measurement, this quantum correc-
tion is not strictly necessarily and could be replaced by a
measurement and a classic error correction before identi-
fying the final state. In this context, the code is used more
as a passive method to control the decoherence than as an
active method, correcting errors.

An appropriate encoding must be able to implement
the gates involved in the network transversally as shown in
Figures 9 and 10 for Hadamard and CNOT, so a suitable
possibility is the binary Steane CSS code [[7,1,3]].
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Fig. 9. Encoded two-qubit Grover network algorithm. The
initial |0E〉 states are encoded by means of the [[7,1,3]], Steane
code and are fault-tolerant bit-flip checked using a CNOT gate
to another |0E〉 state (dashed boxes).

In order to synthesize the initial encoded |0E〉 ⊗ |0E〉
state fault-tolerantly, we take advantage of some benefi-
cial properties of the error equivalence [19] in the [[7,1,3]]
code. It is assumed in standard notation that the clas-
sic codeword u ∈ GF (2)7 produces the quantum state
|u〉 ∈ H⊗7 (H is the qubit Hilbert space). The quantum
code [[7,1,3]] is obtained from a classic Hamming code
C = [7, 4, 3] ⊃ C⊥ = [7, 3, 4]. The encoded state |0E〉
is the linear combination of the states coming from the
eight classic C⊥ codewords. The bit-flip errors affecting
these states can be stated as Xv, v having “1” at the po-
sitions where the bit-flips occur. An error is said to have
weight W (Xv) = WH(v), WH being the usual Hamming
weight of v ∈ GF (2)7. Taking the classic codewords in-
volved in |0E〉 as the starting point, the complete Hilbert
space H⊗7 can be covered considering bit-flip errors of
weight W (Xv) � 3. The Hilbert space H⊗7 is partitioned
into 16 sets, each having a different four-bit syndrome,
considered as codewords of the [7,3,4] classic code. Be-
cause of this structure, it is possible to see the following
property through a simple code inspection. Given the bit-
flip error Xv, WH(v) = 2, ∃u ∈ GF (2)7 with WH(u) = 1
such as Xv|0E〉 = Xu|1E〉, the inverse is also satisfied.
This fact will permit us not to worry about the phase er-
rors in the |0E〉 synthesis. Consider the network preparing
the |0E〉 state is not phase-flip fault-tolerant, meaning that
more than one error could be introduced into the state.
Suppose the phase error is Zv with WH(v) � 2 and

Zv|0E〉 = HXv(H |0E〉) = HXv(|0E〉 + |1E〉)
= H Xu(|1E〉 + |0E〉) = Zu|0E〉.

The conclusion is, there is no phase errors of weight big-
ger than one, so any network synthesizing |0E〉 will be
phase-flip fault-tolerant. We only have to be concerned
about the bit-flips. In order to avoid their accumulation
into the |0E〉 state, an easy method to synthesize a |0E〉
state fault-tolerantly is using a network built from the
generating matrix of the [7,3,4] classic code not worrying
whether it is not fault-tolerant. A second |0E〉 state will be
prepared with the same method and, finally, both states
will be connected by means of a transversal CNOT gate
and the second |0E〉 state measured and collapsed onto the
|w〉 state. The quantum state achieved |w〉, considered as

Fig. 10. Detailed network for the |0E〉 synthesis corresponding
to the pieces of the network inside the dashed boxes in Figure 8.

a classic register w ∈ GF (2)7 will be a codeword of the
[7,3,4] code, correcting bit-flips of weight one and detect-
ing those of weight two and three. Fortunately, when this
code is used to detect errors in the |0E〉 state, can de-
tect bit-flip errors of any weight, because no more than
errors of weight three exist for the |0E〉 state. When an
error is detected in the measured codeword w, the whole
synthesizing method is restarted. The simple synthesizing
|0E〉 network is shown in Figure 10. Phase-flips appear
anywhere and are back spread by means of the CNOT
gates, but they always produce errors of weight one. Note
that some bit-flips happen just after the Hadamard gates
have no effect because they only interchange the states. If
the second |0E〉 state has no bit-flip errors, it can detect
a bit-flip error of any weight in the first |0E〉. The error
probability per time step and gate application is O(ε) and
O(γ), respectively, then the probability of this method
failing to produce a correct |0E〉 state, will came from two
(or more) errors in the network, having an error probabil-
ity O(ε2, γ2) and being fault-tolerant.

The Grover algorithm is carried out encoding the ini-
tial |00〉 state fault-tolerantly with the code [[7,1,3]] and
the previous method, and the results compared with the
case without encoding. The error model characteristics are
kept the same as they were introduced in Section 3. In the
case of n = 2, the result of the error free algorithm is the
state |0E0E〉 after one application of the Grover gate. So
the definition of the error probability is the probability
of obtaining a different state of the |00〉 state after the fi-
nal classic correcting and decoding step. Calculations have
been carried out for C = 1 and 2 and are shown in Fig-
ure 11. In both cases there is an error region in which there
is a passive stabilization coming from the encoding. The
region in which the probability of success is greater, de-
creases as the error increases. Some improvement could be
reached L-concatenating the code as [7L,1,3L] and keep-
ing the structure of the method. Unfortunately this will
be very expensive from the experimental point of view as
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Fig. 11. Comparison of the first maximum probability versus ε
when encoding is used for the Grover algorithm with n = 2 and
different values of C = ε/γ. Dashed lines and open symbols are
the results without encoding and solid lines and full symbols
with encoding: (◦, •) C = 1 and (�, �) C = 2.

the number of qubits increases. To actually improve the
results, an active correction or some other passive method
based on a different strategy would be needed.

5 Conclusions

Grover algorithm has been studied in presence of isotropic
depolarizing noise. The numerical simulation permits us
conclude an exponential damping law for the successive
probability of the maxima as the time increases. The it-
eration time at which the maximum appears depends sig-
nificantly on the intensity of the noise through the error
parameters. Surprisingly, the greater the noise, the fewer
number of time steps are required to reach the first max-
imum, so less computational effort is needed to reach the
item. This fact originated because the damping increases
over time. Note that the corresponding probability of suc-
cess for the first (and subsequent) maximum decreases. We
have been able to obtain an allowed-error law for the algo-
rithm. The error threshold for the allowed noise behaves
like εth(N) ∼ 1/N1.1 as the size of the data set N = 2n (n
is the number of qubits) increases. As the power of N in
this law is 1.1 (near 1.0) we consider the Grover algorithm
as robust to a certain extent against decoherence. This law
also provides an absolute threshold for the present imple-
mentation of the algorithm: if ε > εmaxth = 0.043, Grover
algorithm does not work for any number of qubits affected
by the present error model.

Unfortunately, as the interesting problems to be solved
using the Grover algorithm involve several tens of qubits,

the noise thresholds to be reached by any experimental
device will be very small, then some method of control-
ling decoherence should be necessary. We have used the
binary [[7,1,3]] quantum error correcting code as a passive
method to encode a two qubit state without correction.
For the case of two-qubit encoded Grover algorithm, the
encoding shows a region in which it is possible to increase
the probability of success.

It is necessary to remark that the conclusions achieved
depend on the error model considered. However, although
the circuit of implementation can be optimized, we pre-
sume that the scale laws for the allowed error are still
valid.

The author would like to thank the Spanish Research Project
CCG06-UPM/INF-389 for its financial support.
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